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coHapse

At oapse = Time for the merging objects to coIIapse to a black hole
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Attotal = AtcoIIapse t Atjet formation T -+

Atiet formation = TimMe for jet to form at the poles of the central
engine



Attotal AtcoIIapse T AtJet formation T Atbreakout t.

e
Time for the jet to break out of the Mooley etal. 2017 Radio
previously ejected material e

Atbreakout -

Inferred from Stefan—Boltzmann law

\ Nakar and Sari (2012)

A _ R 10 keV')
Toreakout = 1.4x109cm T

\

GRB Observable
If the prompt gamma-rays originate from cocoon emission, E. Successful hidden Jet
we can constrain the fraction of Atgy.qw due to Aty earout Cocoon gamma-rays

and afterglow



Attotal = At(:ollapse T Atjet formation T Atbreakout T Atr

At = Time for jet propagation before the prompt gamma-ray
emission and escape (regardless of mechanism)

Central Engine Photosphere Internal Shocks External Shock




Attotal = (Atcollapse t Atjet formation T Atbreakout T Atl‘) T
4

Negligible for
high I SGRBs

Negligible for NSBH Mergers Infer from GW-GRB observables

Infer from GRB and kilonovae observables;

: Constrain from face-on NSBH Merger
eventually direct measurement from GW

Unique GW-GRB Observations, with partners, will enable us
to delineate the time delay due to each of these components



Attotal = Atintrinsic * (1+Z)
+ At

massive L

At ..ive = Propagation delay due to massive photon/graviton

D (mc?)*
_ D ( 2) _ 0
c 2E
m, < 7.7 x 1072 eV/c? m, < 1078 eV/c?

LIGO/Virgo Observations of GW170104 Particle Data Group



Attotal = Atintrinsic * (1+Z)
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Atotal Atmtrmsm (1+Z)
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Attotal = Atintrinsic * (1+Z)
+ At assive T Alvew + Alshapino T -

Atspapiro =Relative propagation delay due to gravitational potentials

1+~
S

ot = —

/r U(x(1))dl

&t = Shapiro delay using the same time bounds
r, = observation positon, r, = emission position
U(r) = gravitational potential (here the Milky Way’s)
= wave path
y = deviation from Einstein-Maxwell theory
(where yg,, and yg,, are both equal to 1)

If gravity and light couple to different metrics they will have relative Shapiro delays.
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Attotal - Atintrinsic * (1+Z) + Atmassive
+ Atyew + Dlshapiro + Aty

At = Relative propagation delay due
to violation of Lorentz Invariance

* The best limits on Lorentz Invariance
Violation come from Fermi (GBM+LAT)
observations of the short GRB 090510

* This was likely from a neutron star merger
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At total Atlntrmsm (1+Z)
T Atmassive t AtVGW T AtShapiro t AtLIV

Goes with total intervening

Goes as the distance; . .
gravitational potential

preexisting constraints

Goes as distance and photon energy;
Goes as the distance preexisting constraints (from NS mergers)

We can disentangle intrinsic and relative propagation delays as
winsic - (1+2) will go as the redshift and relative propagation delays
should not (« distance, gravitational potential, photon energy)

At



Attotal = (Atcollapse t Atjet formation T Atbreakout + AtI‘) * (1+Z)

I Emission mechanism
of GRBs

Equation of State of How jets form

Supranuclear matter ]
NS Merger Ejecta

t Atmassive + AtVGW t AtShapiro t AtLIV

I S \

Beyond GR, SM Beyond GR Beyond SR;
Quantum Gravity

Fundamental Physics Nuclear Physics Astroparticle Physics

/ /

NS mergers involve the most extreme timescales, densities, and energetics in the universe.
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Other Future NS Merger Science with Gamma-rays

 Cosmology - the best luminosity distance vs redshift measure possible
* The heavy element enrichment history of the universe

* The existence of NSBH mergers — a new stellar system type

e Ultrarelativistic jet composition

* The best understood astrophysical transient

* Kilonova remnants in the Milky Way
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Cosmology
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The Existence of NSBH Systems
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* NSBH Mergers have predicted observables
* GW detections can constrain the mass and spin components
* SGRB quasi-periodic oscillations
* Only red kilonova with larger ejecta mass (~0.1 M)
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The Existence of NSBH Systems
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* NSBH Mergers have predicted observables
* GW detections can constrain the mass and spin components
* SGRB quasi-periodic oscillations
* Only red kilonova with larger ejecta mass (~0.1 M)

GW-EM observations can discover a new stellar systems
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GW Detections
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Additional GWs from Joint GW-GRB Searches
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Electromagnetic Signals of NS Mergers

- Ultrarelativistic Jet

- Early Afterglow SGRBs
- Late Afterglow

- Blue Kilonova

Kilonova
- Red Kilonova
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Cumulative GW Detections

Electromagnetic Signals of NS Mergers
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